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Abstract

A space–time discontinuous Galerkin (DG) discretization is presented for the (rotating) shallow water equations over
varying topography. We formulate the space–time DG finite element discretization in an efficient and conservative discret-
ization. The HLLC flux is used as numerical flux through the finite element boundaries. When discontinuities are present,
we locally apply dissipation around these discontinuities with the help of Krivodonova’s discontinuity indicator such that
spurious oscillations are suppressed. The non-linear algebraic system resulting from the discretization is solved using a
pseudo-time integration with a second-order five-stage Runge–Kutta method. A thorough verification of the space–time
DG finite element method is undertaken by comparing numerical and exact solutions. We also carry out a discrete Fourier
analysis of the one-dimensional linear rotating shallow water equations to show that the method is unconditionally stable
with minimal dispersion and dissipation error. The numerical scheme is validated in a novel way by considering various
simulations of bore–vortex interactions in combination with a qualitative analysis of PV generation by non-uniform bores.
Finally, the space–time DG method is particularly suited for problems where dynamic grid motion is required. To dem-
onstrate this we simulate waves generated by a wave maker and verify these for low amplitude waves where linear theory is
approximately valid.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

For waves and currents in oceans, coastal zones and rivers with small depth and vertical velocity scales rel-
ative to typical horizontal scales, the hydrodynamics can be studied using (rotating) shallow water equations
[15]. These equations are a two dimensional hyperbolic system modeling the depth and depth-averaged
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horizontal velocities for an incompressible fluid. Due to this hyperbolic nature, discontinuities can develop in
the form of bores or hydraulic jumps. They exist as weak solutions [22] and are considered, in near-shore
hydrodynamics, as mathematical analogs of the three dimensional wave breaking observed at beaches. The
shallow water wave model is one of the simplest models to capture natural wave phenomena such as run-
up and backwash of the shoreline at beaches, coastal waves and tides and floods induced by hurricanes
and tsunamis. These phenomena usually take place in a complex shaped domain with a combination of fixed
and freely moving boundaries, where the moving boundaries are due to the movement of the shoreline. To
cope accurately with these complexities, we present a space–time discontinuous Galerkin method for simulat-
ing shallow water waves on a dynamic spatial grid. The free boundary treatment is left to the future study but
as a preliminary step we consider moving boundaries due to a wave maker (see also [5]).

The space–time discontinuous Galerkin method [24] can accurately model inviscid compressible fluid flows
in a time dependent flow domain. In this method, we tessellate the space–time domain with space–time finite
elements and on such an element we define the local basis functions to approximate the flow field and test
functions. As a result, the space–time weak formulation results into element volume and face integrals per
space–time element. Communication between elements arises via a numerical flux. There are several choices
of numerical fluxes; here we have chosen the HLLC flux because it is accurate and efficient compared with
other approximate Riemann solvers (see [4,24,21]). This HLLC flux results in an upwind flux in the time direc-
tion ensuring the causality of time.

The finite element discretization of the weak formulation results in a set of coupled non-linear algebraic
equations per space–time element. These equations are then solved locally by adding a pseudo-time derivative
and integrating in pseudo-time until a steady state is reached. We use the five-stage second-order accurate
Runge–Kutta time integration scheme defined in [24]. The convergence acceleration of the pseudo-time inte-
gration scheme towards steady state can be quite slow without special attention, yet at a reasonable compu-
tation time compared to explicit space DG schemes. However, we have left the implementation of a multi-grid
algorithm [24,14] to accelerate the convergence of the pseudo-time integration as future work.

Numerically, spurious oscillations are expected to appear only around hydraulic jumps or bores. To limit
these spurious oscillations, a dissipation operator of Jaffre et al. [8] is added to the discretization, as in Van der
Vegt and Van der Ven [24] where it operates everywhere but very mildly in smooth regions and strongly
around discontinuities. In contrast, we apply the dissipation operator where the discontinuity detector of
Krivodonova et al. [9] informs us to apply it. This more strongly preserves the higher order accuracy in
smooth regions and suppresses the spurious oscillations around discontinuities. The crucial difference between
space and space–time discontinuous Galerkin finite element methods is that in the latter case time is also trea-
ted with a finite element instead of a finite difference method. Further, space and time are treated in unison
with space–time basis functions, here polynomials in space and time. Preservation of non-negative or positive
depths has received a lot of attention in finite-volume modelling (e.g. [3]). It has the disadvantage that even
when land must fall dry, it will always stay covered with ‘‘numerical’’ water. This may lead to a robust scheme
but effectively leads to mass loss. Bokhove [5] therefore only ensures positive mean depths in an element, but
does allow the slope of the depth to indicate where dry regions may appear in a space discontinuous Galerkin
method. Problematic (e.g., in [5]) is the finite difference discretization in time, which only allows a wet region
with positive depth to become a region with negative depth after one (intermediate) time step. The space–time
method has the advantage of a finite element method in which the water line is known in space and time.1

Novel is that the space–time discontinuous Galerkin method is presented for rotating shallow water waves
over varying bottom topography in fixed and time dependent flow domains. To preserve the hydrostatic bal-
ance of the rest state over arbitrary topography, and uniform flow of water over a flat bottom, at the discrete
level, we approximate the topography smoothly with a linear polynomial basis based on a nodal approxima-
tion per element. Discrete Fourier analysis of the present numerical method for linear rotating shallow water
equations in one dimension is carried out to show that the method is unconditionally stable and has minimal
dispersion error and dissipation.
1 By combining local mesh adaptation and a non-negative approach in pseudo-time, we aim to deal much more accurately with flooding
and drying. Initial tests are encouraging [1].
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Furthermore, the accuracy of the numerical scheme is thoroughly verified in a comparison with some
known exact and approximate solutions. We simulate the harmonic modes of linearized (rotating) shallow
water equations, which includes Kelvin and Poincaré modes under low amplitude for a number of time peri-
ods to show qualitatively that the scheme has minimal dispersion error and dissipation. Rotating shallow
water flows dissipate energy in the presence of bores or jumps and generate PV anomaly in the case of
non-uniform bores (see [16,17]). Such bore–vortex interactions are considered as necessary, advanced and
demanding test cases in which non-uniform bores are formed and subsequently PV is generated (see [7]).

This paper is organized as follows: the shallow water equations, their conservation laws and the generation
of PV by non-uniform bores are discussed in Section 2. The space–time discontinuous Galerkin finite element
method in a time dependent computational domain is presented in Section 3. A discrete Fourier analysis and
the persistence of the steady rest state over smooth topography are shown in Section 4. The numerical scheme
is verified in Section 5. The PV anomaly generated by non-uniform bores is validated in Section 6. Conclusions
follow in Section 7.

2. Rotating shallow water flows

2.1. Mathematical model

The rotating shallow water equations in the conservative form are (see [15])
$ �FiðUÞ ¼ Si in X � R2; ð1Þ

where $ ¼ ðot; ox; oyÞT is the differential operator, U ¼ ðh; hu; hvÞT the state vector, hðxÞ the water depth,

uðxÞ ¼ ðuðxÞ; vðxÞÞT the velocity field,
FðUÞ ¼
F0ðUÞ
F1ðUÞ
F2ðUÞ

0B@
1CA ¼ h hu hv

hu hu2 þ gh2=2 huv

hv huv hv2 þ gh2=2

0B@
1CA the flux tensor;

S ¼ ðS0; S1; S2ÞT ¼ ð0; fhv� ghoxhb;�fhu� ghoyhbÞT
the source vector, g the gravitational acceleration, f the Coriolis parameter, hbð�xÞ the bottom topography and
x ¼ ðt; �xÞ ¼ ðt; x; yÞ the space–time coordinates. Finally, we complete the system (1) with inflow, outflow or
solid wall boundary conditions at the boundary oX � R and initial conditions Uð0; �xÞ.

For numerical calculations, we non-dimensionalize the equations with typical length L, time T, depth H

and velocity V scales as
t0 ¼ t=T ; �x0 ¼ �x=L; h0 ¼ h=H ; h0b ¼ hb=H ; f0 ¼ fT and u0 ¼ u=V ; ð2Þ

where V ¼

ffiffiffiffiffiffiffi
gH
p

and T ¼ L=
ffiffiffiffiffiffiffi
gH
p

. Substituting (2) in (1) and dropping the primes, the non-dimensionalized
shallow water equations effectively become (1) with g ¼ 1 and f ! fT .

2.2. Conservation laws

The shallow water equations (1) govern the conservation of mass and momentum of the system. In the
absence of discontinuities, the shallow water equations conserve energy, absolute vorticity and enstrophy
ot

eE
hP

hQ

0B@
1CAþr � ðeE þ gh2=2Þu

huP

huQ

0B@
1CA in X � R2; ð3Þ
where the energy
eEðxÞ :¼ hjuj2=2þ gh2=2þ ghhb; ð4Þ

potential vorticity PðxÞ :¼ ðXv þ fÞ=h, absolute vorticity XvðxÞ ¼ oxv� oyu, potential enstrophy QðxÞ :¼ P2=2
and r :¼ ðox; oyÞT. Furthermore, potential vorticity is materially conserved, i.e.,
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otPþ u � rP ¼ 0 in X: ð5Þ
2.3. Bore–vortex anomaly

We concisely write (1) as otUþr � FðUÞ ¼ S with U the temporal and F(U) the spatial part of the flux vec-
tor F. The shallow water equations (1) admit discontinuities in the form of tidal bores in coastal seas or
hydraulic jumps in river channels, or may develop discontinuities in finite time from smooth initial data as
bores formed due to wave breaking phenomena. These discontinuities are weak solutions of the conservation
law otUþr � FðUÞ ¼ 0. For smooth topography, they satisfy the Rankine–Hugonoit relations [12] given by
s�n � FðUÞ � V nUt ¼ sSt ¼ 0; ð6Þ

where �n is the unit space normal vector at point �xc on the discontinuity curve pointing from 1 to 2, as in Fig. 1,
V n ¼ V � �n the normal velocity of the discontinuity, V ¼ ðV x; V yÞT the velocity of the discontinuity and sÆb the
jump defined as sqt :¼ q1 � q2 with q1 ¼ lim�#0qðt; �xc � ��nÞ and q2 ¼ lim�#0qðt; �xc þ ��nÞ the traces of q taken
from either side of the discontinuity. Applying (6) for the mass and momentum conservation laws (1), we ob-
tain the following jump relations across the bore [19,25]:
shðu � �n� V nÞt ¼ 0 and shðu � �nÞðu � �n� V nÞ þ
1

2
gh2t ¼ 0: ð7Þ
Introducing the normal velocity of water particles relative to the moving bore as û ¼ u � �n� V n and solving the
relations (7), we obtain
Q2 :¼ ðh1û1Þ2 ¼ ðh2û2Þ2 ¼ gh1h2ðh1 þ h2Þ=2 ð8Þ

with h1 and h2 the depths adjacent to the bore, and discharge Q across.

In the presence of discontinuities, the jump relations of the energy, vorticity and enstrophy conservation
laws are not satisfied and hence they are not conserved. Instead, for the energy conservation law in (3), if
we evaluate the L.H.S. of the Rankine–Hugonoit relation (6) then we obtain the rate of energy dissipation
across the bore as (see also [11,20])
QED ¼ sðeE þ gh2=2Þðu � �nÞ � V n
eEt ¼ gQðh2 � h1Þ3=ð4h1h2Þ ð9Þ
with ED the energy dissipation per unit discharge across the bore. To obtain the physically meaningful solu-
tion, we have to assume that the energy dissipation QED > 0 for h1 6¼ h2, since the energy flux
sðeE þ gh2=2Þðu � �nÞt through the bore should always be greater than sV n

eEt the rate of change of energy at
the bore. Further, for uniqueness, we have to assume that the water particles crossing the bore should always
lose energy [20]. Hence, for Q > 0 we have h1 < h2 and for Q < 0 we have h1 > h2, since we must have
QED > 0. This is the energy dissipating condition analogous to the entropy condition in gas dynamics.

Peregrine [16] shows that the jump in PV sPt ¼ P1 �P2 can be calculated by modification of Kelvin’s cir-
culation theorem to obtain
sPt ¼ DP ¼ � 1

Q
dED

dŷ
ð10Þ
with local coordinates x̂ ¼ ðx̂; ŷÞT and ŷ aligned along the tangent of the bore.
A sketch of a bore along with stream lines (a), a contour C, and traces of the upstream and downstream flow field at the bore (b).
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Hence, if there was no PV in the water undisturbed by the bore then P2 is the new nonzero PV when Q > 0
and, vice versa, P1 is the new nonzero PV when Q < 0. Bühler [6] shows that only PV anomalies can be gen-
erated by bores, such that the total PV remains the same in the absence of sources or sinks of PV other than
the bores and hydraulic jumps. In the numerical simulations, we qualitatively verify the generation of PV due
to non-uniform energy dissipation along the bore.
3. Space–time DG finite element model

3.1. Space–time tessellation, function spaces, traces and trace operators

The space–time flow domain E is defined as E :¼ fðt; �xÞj�x 2 XðtÞ; t0 < t < T g � R3 with XðtÞ � R2 the flow
domain, t0 the initial time and T the final time. To tessellate the space–time domain, the time interval ½t0; T � is
divided into NT finite time intervals In ¼ ½tn; tnþ1� with n ¼ 0; . . . ;N T . Now at each time level tn, we tessellate
the flow domain XðtnÞ using the open space elements Kn

k with closure �Kn
k to obtain a mesh with Ne spatial ele-

ments. The space–time tessellation consisting of space–time elements Kn
k can be obtained by connecting the

corresponding spatial elements Kn
k and Kn�1

k of the computational space domain Xh at times tn and tn�1. It
is convenient to map each space–time element Kn

k onto a reference element K̂ with its coordinates
ðf0; f1; f2Þ in which f0 corresponds to time t. We choose quadrilaterals as the spatial elements and thus we
obtain hexahedrals as the space–time elements.

To define the discontinuous Galerkin weak formulation, we introduce the broken space Vd
h defined as

Vd
h :¼ fVh

��VhjK 2 ðP 1ðKÞÞdg with P1 the space of linear polynomials, d ¼ dimðVhÞ and Vh the polynomial

approximation per space–time element defined as Vh :¼
PM�1

m¼0
bVmwmðxÞ; where bVm is the expansion coefficient,

wmðxÞ the polynomial basis functions and M the number of basis functions. The basis functions are chosen
such that the local finite element space on Kn

k is either of span f1; t; x; y; xyg with M ¼ 5 for fixed meshes
or of span f1; t; x; y; xy; tx; ty; txyg with M ¼ 8 for dynamic meshes (see [24] for definitions). Such a span allows
us to approximate functions as piecewise continuous and linear on a space–time hexahedral mesh, which is
particularly useful to approximate the bottom topography hbð�xÞ.

To calculate the flux through the element boundaries, it is useful to introduce the union of faces Sm, each
face either connecting two space–time elements, known as interior face, or a space–time element to the bound-
ary of the space–time domain oE, known as boundary face. The union of all faces Sm is C ¼ Cint [ Cbou with
Cint and Cbou the union of interior and boundary faces, respectively. It is also useful to define the trace of the
function Vh on the element boundary oKn

k taken from the inside of the space–time element Kn
k as
VhðxÞjoKn
k
¼ V� :¼ lim

�"0
Vhðxþ �nKÞ ð11Þ
with nK the outward unit normal vector of the boundary oKn
k. Since Vh 2Vd

h, i.e., the functions are approx-
imated per space–time element Kn

k, the traces of the function taken from the inside of any two adjacent ele-
ments are discontinuous. Hence, on each face Sm connecting the element Kl from left and Kr from right, it is
convenient to introduce the following weighted average and jump sÆb trace operators:

Definition 1. The weighted average of a scalar function F 2Vd
h and of a vector function

G 2Vd
h on Sm 2 Cint are defined as
:¼ ðaF l þ bF rÞ and :¼ aGl þ bGr ð12Þ
with aþ b ¼ 1; and Fl and Fr the traces of the scalar function F, and Gl and Gr the traces of the vector function
G taken from the inside of elements Kl and Kr, respectively.

Definition 2. The jump sFb of a scalar function F 2Vd
h and sGb of a vector function G 2Vd

h on Sm 2 Cint are
defined as
sF t :¼ ðF lnl
K þ F rnr

KÞ and sGt :¼ Gl � nl
K þGr � nr

K ð13Þ
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with nl
K and nr

K the outward unit normal vectors of the face Sm w.r.t. elements Kl and Kr, respectively. Note
that nl

K ¼ �nr
K. Now the following relation holds between jumps and averages:
F lðGl � nl
KÞ þ F rðGr � nr

KÞ ¼ sGtþ sF t � ; Sm 2 Cint: ð14Þ
3.2. Discontinuous Galerkin weak formulation

The discontinuous Galerkin weak formulation per space–time element Kn
k is obtained by multiplying the

shallow water equations (1) with arbitrary test functions Wh 2Vd
h, integrating by parts over space–time ele-

ment Kn
k, using Gauss’ theorem in space and time, introducing the shorthand notation FiðU�Þ ¼F�

i , and
summing up over all space–time elements. We obtain then the weak formulation as

Find a Uh 2Vd
h such that for all
X

S

Z
Sm

bF iðUl;Ur; nKÞðW l
i � W r

i ÞdS
� �

�
X
K

Z
Kn

k

$W hi �FiðUhÞdKþ
Z
Kn

k

W hiSi dK

( )
¼ 0

8Wh 2Vd
h ð15Þ
is satisfied.
In obtaining the weak formulation (15), we have rearranged the element boundary integrals into a summa-

tion of interior and boundary face integrals, used the relation (14), enforced the continuity of the flux sFit ¼ 0
and introduced a consistent and conservative numerical flux as
bF iðUl;Ur; nKÞ � nK � for Sm 2 Cint and nK �Fl

i for Sm 2 Cbou; ð16Þ

where FK , UK and WK are the limiting trace values on the face Sm taken from the inside of the element
KK ; K ¼ l or r; and, nK is the unit normal vector. In Section 3.4, we will define the normal numerical fluxbF iðUl;Ur; nKÞ through the faces. The weak formulation (15) is akin to the numerical implementation in which
we loop separately over faces and elements to calculate the face and element integrals.

3.3. Numerical dissipation near bores and jumps

In numerical discretizations of the weak formulation (15), spurious oscillations generally appear near dis-
continuities. To suppress these spurious oscillations, we extend and apply the dissipation operator of Van der
Vegt and Van der Ven [24] into the weak formulation per space–time element Kn

k as
Dn
kðWh;Uh; U�hÞ :¼

Z
Kn

k

ð$U hiÞTDn
kðUh;U

�
hÞð$W hiÞdK; ð17Þ
where Dn
kðUh;U

�
hÞ is the diagonal dissipation matrix, Uh the solution in Kn

k and U�h the solution in the imme-
diate neighboring elements of Kn

k. The dissipation operator (17) acts in every space–time element Kn
k but is

only required around discontinuities and sharp gradients.
The evaluation of the numerical dissipation operator Dn

kðWh;Uh;U
�
hÞ is more straightforward in the refer-

ence coordinate directions than in the physical space coordinates, so we transform (17) onto the reference ele-
ment as
Dn
kðWh;Uh; U�hÞ :¼

Z
bKð brU hiÞTðJ�1Dn

kðUh;U
�
hÞðJ TÞ�1Þð brW hiÞjJ jdK̂ ð18Þ
with J the Jacobian matrix defined as J kl :¼ oxk=ofl, jJ j the determinant of the Jacobian matrix,br ¼ ðof0
; of1

; of2
ÞT ¼ J Tr. Now, we introduce the dissipation matrix eDn

kðUh;U
�
hÞ on the reference element

as eDn
kðUh;U

�
hÞ :¼ J�1Dn

kðUh;U
�
hÞðJ TÞ�1

: To evaluate (18) with less computational effort, we computeeDn
kðUh;U

�
hÞ only at the midpoint of the reference element f ¼ ð0; 0; 0Þ at which the Jacobian matrix is diago-

nalized as J ¼ diagfc0; c1; c2g=2 with ck ¼ 2
P3

l¼0oxk=ofl. Since Dn
kðUh;U

�
hÞ is a diagonal matrix, the dissipation

matrix eDn
kðUh;U

�
hÞ is simplified to
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eDn
k;klðUh;U

�
hÞjf¼ð0;0;0Þ :¼ 4

c2
k

Dn
k;kkðUh;U

�
hÞ for k ¼ l; and 0 for k 6¼ l: ð19Þ
Jaffre et al. [8] proposed a diagonal dissipation matrix Dn
kðUh;U

�
hÞ for hyperbolic conservation laws, which is

defined as
Dn
k;kkjðf¼0;0;0Þ :¼ maxðC2c

2�c
K Rn

kðUh;U
�
hÞ;C1c

1:5
K Þ; if k ¼ 1; 2

0; if k ¼ 0

(
ð20Þ
for the shallow water equations with
Rn
kðUh;U

�
hÞ :¼ max

i
max
x2Kn

k

k$ �FiðUhÞk
���� ����þ X

Sm�oKn
k

C0

cK
max

i
max
x2Sm

ksFitk
���� ����; ð21Þ
cK ¼ minðc1; c2Þ a scaling factor, maxx2Kn
k
k � k is based on the midpoint of the reference element, maxx2Sm

k � k
is based on the midpoint of the face of the reference element, and Ci for i ¼ 0; 1; 2 and c are positive constants.
The positive constants are taken from [24] as C0 ¼ 1:2 if the normal of the face Sm is parallel to the time direc-
tion or else C0 ¼ 1:0; C1 ¼ 0:1; C2 ¼ 0:1 to 1.0 and c ¼ 0:1 in which C2 is tuned depending upon the desired
quality of solution.

Krivodonova et al. [9] proposed a discontinuity detector scheme, to apply numerical dissipation (17) only
near discontinuities. We adopt the Krivodonova discontinuity detector for the shallow water equations as
follows:
In
kðhh; h

�
hÞ :¼

P
Sm2oKn

k

R
Sm
jhþ � h�jdS

h
ðpþ1Þ=2
K joKn

kjmax khhk
; ð22Þ
where hh is the approximated water depth, hK the cell measure defined as the radius of the largest circum-
scribed circle in the element Kn

k, joKn
kj the surface area of the element, and max k � k the maximum norm

based on local Gauss’ integration points in the element Kn
k. Now the space–time elements in non-smooth

and smooth regions are detected by In
k > 1 and In

k < 1, respectively. The weak formulation (15) is combined
with the dissipation operator (17) based on the discontinuity detector (22) by adding the term
HðIn

k � 1ÞDn
kðUh;U

�
hÞ to (15), where HðIn

k � 1Þ is the Heaviside function.

3.4. Numerical HLLC flux

In the weak formulation (15), we introduced the approximate numerical flux cFðUl;Ur; nKÞ because the
solution vector Uh is discontinuous at the element face, as in Fig. 2. The numerical flux is usually given
by the solution of the Riemann problem identified with the trace values Ul;r directly on either side of the
face. Since the solution of Riemann problem is computationally expensive, approximate Riemann solvers
Fig. 2. (a) Geometry at a face Sm connecting the space–time elements Kl and Kr. (b) Local Riemann problem at a face.
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are used in practice. The HLLC solver in [23] is such an efficient and approximate Riemann solver. In
[4], the HLLC solver was improved with appropriate choices of acoustic and contact wave velocities for
the Euler equations. Further in [24], this solver was extended to dynamic grids. We show here that the
HLLC flux can be derived in space–time without making any explicit difference between space and time
such that the resulting flux is applicable at all the faces of the space–time element. The approach applies
the HLLC-technique in pseudo-time s and the direction v of the outward normal in a space–time
element.

To analyze the HLLC flux through the face Sm, we first have to understand the geometry at the face Sm

connecting the space–time elements Kl and Kr. For convenience, let us take the coordinate axis with the ori-
gin located at the bottom corner of the face Sm as in Fig. 2(a). Now, the top corner of the face Sm can be
taken ðDt;D�xÞ with D�x ¼ ðDx;DyÞ the displacement of the top corner from the bottom corner in the x and
y directions, respectively. The tangential vector tK along the face can be taken as ðDt;D�xÞT. Since the tangen-
tial and normal vectors are orthogonal, we have
nt ¼ ��nK � D�x=Dt ¼ ��nK � vg ¼ �vg=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

g

q
ð23Þ
with nK ¼ ðnt; �nKÞ the unit space–time normal vector of the face Sm, �nK ¼ ðnx; nyÞ ¼ ð~nx; ~nyÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

g

q
,

~nK ¼ ð~nx; ~nyÞ the spatial normal vector, vg ¼ D�x=Dt the grid velocity and vg ¼ ~nK � vg the normal grid velocity.
To unify the derivation of a space–time numerical flux, we consider the one-dimensional shallow water equa-
tions in the direction nK normal to a space–time face of an element. By ignoring dependencies in the other
directions, we obtain
osUþ ov
bF ¼ 0 ð24Þ
with U ¼ ðh; hu; hvÞT; bF ¼ ðhq; huqþ nxP ; hvqþ nyP ÞT, effective pressure P ¼ gh2=2, space–time velocity
q ¼ nt þ �nK � u; ð25Þ

v the coordinate in the direction of nK, and pseudo-time s. The spatial HLLC approach of [4] is now applied
to (24) but in the s; v-space. The HLLC wave patterns are sketched in Fig. 3(a) in the physical t; �x-space and
in Fig. 3(b) in the s; v-space. In physical space, the left and right waves are taken as
Sl ¼ minð~ql � al; ~qr � arÞ and Sr ¼ maxð~ql þ al; ~qr þ arÞ ð26Þ

with ~q ¼ ~nK � u the speed in the spatial normal direction, as in [4], and a2 ¼ oP=oh. We infer from (25) that
sr ¼ ðSr � vgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

g

q.
and sr ¼ ðSl � vgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

g

q.
: ð27Þ
As usual, four possible cases occur (i) sl < 0; sr > 0; sm > 0; (ii) sl < 0; sr > 0; sm < 0; (iii)
sl < 0; sr < 0; sm < 0 and (iv) sl > 0; sr > 0; sm > 0. Combining the HLLC flux for the four cases (as in
[4]), but in the s; v-space, we obtain
bFHLLCðUl;Ur; nKÞ ¼
1

2
fbFl þ bFr � ðjslj � jsmjÞU�l þ ðjsrj � jsmjÞU�r þ jsljUl � jsrjUrg; ð28Þ
where bFl;r ¼ bFðUl;rÞ. The usual HLLC-expressions for the wave speed sm and the average intermediate states
U�l and U�r are given next.
Fig. 3. (a) HLLC wave pattern in physical space with vg ¼ �nK � vg. (b) The HLLC pattern in s; v-space.
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As in [4] we assume sm ¼ q�l ¼ q�r ¼ q� where q* is the average directed velocity between the left and right
waves. The q* can be obtained from the average intermediate state U� calculated using HLL approach (see
Fig. 4). The average intermediate state U� is given by
U� ¼ ðsrU
r � slUl � ðF̂r � F̂lÞÞ=ðsr � slÞ: ð29Þ
The wave speed sm follows from (29) as
sm ¼ q� ¼ nK �U�

h�
¼

hrqrðsr � qrÞ � hlqlðsl � qlÞ � ðn2
x þ n2

yÞðP r � P lÞ
hrðsr � qrÞ � hlðsl � qlÞ

ð30Þ
with h* the average intermediate depth, following from (29). By substituting the expressions (25) and (27) into

(30), it follows that sm ¼ ðSm � vgÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

g

q
, as expected heuristically. Here Sm is the expression in [4]; essen-

tially it follows by replacing the space–time variables in (30) by their space counterparts as in:
sm ! Sm; sr ! Sr; Sl ! sl; ql ! ~ql and qr ! ~qr.

The intermediate states U �l and U �r are determined by using the Rankine–Hugonoit relations across left
wave and right wave as
ðsl;r � smÞU�l;�r ¼ ðsl;r � ql;rÞUl;r þ ðbP�l;�r � bPl;rÞ; ð31Þ
where bP�l;�r ¼ ð0; nxP �l;r; nyP �l;rÞ is the average intermediate normal pressure, P �l;r is the average intermediate
pressure obtained by multiplying (31) with nK and is given by
P � ¼ P �l;r ¼ P l;r þ ðhl;rðsl;r � ql;rÞðsm � ql;rÞÞ=ðn2
x þ n2

yÞ: ð32Þ
When sl > 0 the flux simplifies to bFl and when sr < 0 to bFr, i.e. the classic upwind cases.
The expressions (27)–(32) for our HLLC flux, using
nK ¼ ðnt; nx; nyÞ ¼ ð�vg; ~nx; ~nyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

g

q.
ð33Þ
reduce to the expressions in [24]: in comparison our flux is multiplied by a factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

g

q
because we in-

cluded the space–time normal. In the limit vg !1, we obtain
bFHLLC ¼ lim
vg!1

bFr ¼ �ðhr; ur; ur; hrvrÞT: ð34Þ
This is consistent since we are at the bottom face t ¼ tn of a space–time element with space–time normal
nK ¼ ð�1; 0; 0ÞT, and (24) becomes osU� ovU ¼ 0. Causality in time thus reduces to an upwind flux in our
unified approach, as expected. Likewise, we find at the top t ¼ tnþ1 of the space–time element that vg ! �1
bFHLLC ¼ lim

vg!�1
bFl ¼ ðhl; ul; ul; hlvlÞT; ð35Þ
and (24) becomes osUþ ovU ¼ 0.
Fig. 4. Riemann fan for shallow water equations (HLL approach).
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3.5. Discretized weak formulation: non-linear equations

The weak formulation (15) is discretized by substituting the polynomial approximation of the state vector
Uh and using the arbitrariness of the test function Wh as ðwj; 0; 0Þ; ð0;wj; 0Þ and ð0; 0;wjÞ; j ¼ 0; . . . ;M � 1
with M ¼ 5 or M ¼ 8. The discretized equations can now be obtained as
Ln;K
k;ij ðbUn; bUn�1Þ ¼

X
Sm�oKn

k

F k;S
m;ij � En;K

k;ij þHðIn
k � 1ÞDn;K

k;ij � Gn;K
k;ij ¼ 0; ð36Þ
where i ¼ 0; 1; 2 is the index for the shallow water equations, m the index for the expansion coefficients, m the
index for the faces and k the index for the elements. The various terms in the non-linear equations (36) are
represented as follows:
En;K
k;ij ðbUnÞ ¼

Z
Kn

k

$wj �FiðUhÞdK;

F k;S
m;ijðbUn; bUn�1Þ ¼

Z
Sm�oKn

k

bF iðUl;Ur; nKÞwj dS; k ¼ l or r

Dn;K
k;ij ðbUn; bUn�1Þ ¼

XM�1

m¼0

bU n
im

�Dn;K
k;jmðbUn; bUn�1Þ with

�Dn;K
k;jmðbUn; bUn�1Þ ¼

Z
Kn

k

ð$wmÞ
T
Dn

kðUh;U
�
hÞð$wjÞdK; and

Gn;K
k;ij ðbUnÞ ¼

Z
Kn

k

wjSi dK:

ð37Þ
Given the coefficients bUn�1 at the previous time level tn�1, we have to find the coefficients bUn satisfying (36) at
the present time level tn.

3.6. Pseudo-time integration: non-linear solver

To solve the system of non-linear equations (36) obtained from the space–time discontinuous Galerkin dis-
cretization, we augment these equations with a pseudo-time derivative as
jKn
kj

o bU ij

os
¼ � 1

Dt
Ln;K

k;ij ðbU; bUn�1Þ ð38Þ
with Dt ¼ ðtn � tn�1Þ the time step and jKn
kj ¼ jK

n
kj=Dt. Now we integrate (38) until the solution reaches steady

state in pseudo-time, i.e., Ln;K
k;ij ðbUn; bUn�1Þ � 0: The pseudo-time integration is performed by using a second-or-

der accurate five-stage Runge–Kutta scheme as described in Ambati and Bokhove [2]. The pseudo-time step
Ds is determined locally per space–time element by a CFL condition given as DsjKn

k
¼ CFLDsjKn

kj=Sn
k;max with

Sn
k;max the maximum wave speed in the space–time element Kn

k and CFLDs ¼ 0:8 the CFL number for the pseu-
do-time step.
4. Properties and analysis of the numerical discretization

4.1. Persistence of the discretized rest state

The shallow water equations at rest satisfy u ¼ 0 for a fixed depth hðxÞ ¼ Dð�xÞ such that
rðgh2=2Þ ¼ �ghrhb. For smooth topography hbð�xÞ þ hðxÞ ¼ H is constant.

Proposition 3. Consider the shallow water equations with a consistent and conservative numerical flux
F̂ðU�;Uþ; nKÞ and the weak formulation (15). The weak formulation (15) exactly satisfies the steady rest state
u ¼ 0; H ¼ hðxÞ þ hbð�xÞ if
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(1) The bottom topography hbð�xÞ is approximated smoothly as follows:
~hbð�xÞ ¼
XM�1

0

ĥb;mwm such that ð39Þ

hbðxk; ykÞ ¼ ~hbðxk; ykÞ for k ¼ 0; 1; 2 and 3 ð40Þ
with ~hbð�xÞ the approximated topography, wm the basis functions, ĥb;m the expansion coefficients of the topo-
graphic approximation and ðxk; ykÞ the nodal coordinates of the spatial element Kk. The expansion coefficients
corresponding to the time coordinate are taken zero.

(2) The rest water depth hðxÞ is approximated as
~hð�xÞ ¼ H � ~hbð�xÞ ¼
XM�1

m¼0

ĥmwm ð41Þ
with ~hð�xÞ the approximated water depth and ĥm the expansion coefficient of the water depth obtained using a
(dis)continuous Galerkin projection with expansion coefficients corresponding to time set to zero.

(3) The spatial element Kn
k is not deforming in time.

Proof. We give the proof for the case with M ¼ 5. The approximated topography ~hbð�xÞ as given in (39) sat-
isfying (40) ensures that ~hbð�xÞ is piecewise continuous and linear along the faces. Hence, ~h in (41) is also piece-
wise continuous and linear along the faces. Since the velocities are zero, we can now conclude that
Uh ¼ ð~h; ~hu; ~hvÞ is piecewise continuous and linear along the faces. Also the traces on each element boundary
from the inside and outside the element are equal, i.e., UhjoKn

k
¼ U� ¼ Uþ. Using the consistency property of

numerical flux, we get
fFðU�;Uþ; nKÞ ¼FðUhÞ: ð42Þ

Substituting (42) in (15) for every element, we obtain an alternative form of the weak formulation as follows:
Z

oKn
k

W �
j ðnK �FiðU hÞÞdðoKÞ �

Z
Kn

k

$W hj �FiðUhÞdK�
Z
Kn

k

W hjSi dK ¼ 0: ð43Þ
After integrating by parts and applying Gauss’ theorem in space and time, we get
Z
Kn

k

W hiðr �FiðUhÞÞdK�
Z
Kn

k

W hiSi dK ¼ 0: ð44Þ
Since Wh is arbitrary, the approximation Uh needs to satisfy
r �FiðUhÞ ¼ Si: ð45Þ

Substituting the approximations Uh in r �FiðUhÞ, we get
ot
~h ¼ otðH � ~hbÞ ¼ 0; and rðg~h2=2Þ ¼ g~hrðH � ~hbÞ ¼ �g~hr~hb: ð46Þ
Hence, the steady rest state is satisfied in the discretized equations. h

This strategy to preserve the rest state coincides with the one in [5,21], and contrasts with the ones in [3,10],
because we consider smooth topography. Preservation of the rest state with discontinuous bottom topography
and a Galerkin finite element method is found in Rhebergen et al. [18].
4.2. Discrete Fourier analysis of the numerical discretization

For the discrete Fourier analysis of the space–time DG discretization, we consider the one-dimensional lin-
earized rotating shallow water equations
otgþ oxðHuÞ ¼ 0; otu� fv ¼ �goxg and otvþ fu ¼ 0 ð47Þ
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with gðt; xÞ the free surface perturbation around a mean surface depth H, ðuðt; xÞ; vðt; xÞÞ the velocity field, g the
gravitational acceleration and f the Coriolis parameter.

These equations can be solved using the following ansatz:
gðt; xÞ ¼ AeıðkxþxtÞ and ðuðt; xÞ; vðt; xÞÞ ¼ �gAk

ðx2 � f2Þ
ðx; fıÞeıðkxþxtÞ ð48Þ
yielding the dispersion relation x2 ¼ a2k2 þ f2 with amplitude A, frequency x, wave number k and gravity
wave speed a ¼

ffiffiffiffiffiffiffi
gH
p

.
To discretize (47), we consider one-dimensional space–time elements Kn

k with neighboring elements Kn
k�1

and Kn
kþ1 in the x-direction, and Kn�1

k and Knþ1
k in the t-direction. The faces of the space–time element Kn

k

can now be given by Sl ¼Kn
k�1 \Kn

k;Sr ¼Kn
k \Kn

kþ1;Sb ¼Kn�1
k \Kn

k and St ¼Kn
k \Knþ1

k with ele-
ment boundary oKn

k ¼ Sl [Sr [Sb [St. In each space–time element, we approximate the wave field
ðg; u; vÞ as
ðgn
k; u

n
k; v

n
kÞ ¼

X2

j¼0

ðĝn
k;j; û

n
k;j; v̂

n
k;jÞwj ð49Þ
with ðĝn
k;j; û

n
k;j; v̂

n
k;jÞ the expansion coefficients and wj the basis functions. The basis functions wj in the reference

elements K̂ are defined as ŵ ¼ ð1; f0 � 1; fÞ.
To simplify the weak formulation (15) per space–time element, we substitute ð~g; ~u;~vÞ :¼ ðgþ; u�; v�Þ in the

numerical flux evaluation at the elements faces Sl and Sr, and the upwind flux in the time direction. The weak
formulation (37) then becomes
�
Z
Sb

gn�1
k w�1 dSþ

Z
St

gn
kw�1 dS�

Z
Sl

Hun
k�1w�1 dSþ

Z
Sr

Hun
kw�1 dS

�
Z
Kn

k

ðotw1Þgn
k dK�

Z
Kn

k

ðoxw1ÞHun
k dK ¼ 0;

�
Z
Sb

un�1
k w�2 dSþ

Z
St

un
kw�2 dS�

Z
Sl

ggn
kw�2 dSþ

Z
Sr

ggn
kþ1w�2 dS

�
Z
Kn

k

ðotw2Þun
k dK�

Z
Kn

k

ðoxw2Þggn
k dK�

Z
Kn

k

w2fvn
k dK ¼ 0;

�
Z
Sb

vn�1
k w�3 dSþ

Z
St

vn
kw�3 dS�

Z
Kn

k

ðotw3Þvn
k dKþ

Z
Kn

k

w3fun
k dK ¼ 0

ð50Þ
with ðw1;w2;w3Þ the test functions. Substituting the polynomial approximation (49) in (50), the numerical dis-
cretization is obtained as
� An
kĝ

n�1
k þ Bn

kĝ
n
k � HCn;1

k ûn
k�1 þ HDn;1

k ûn
k � En

kĝ
n
k � HF n

kûn
k ¼ 0;

� An
kûn�1

k þ Bn
kûn

k � gCn;2
k ĝn

k þ gDn;2
k ĝn

kþ1 � En
kûn

k � gF n
kĝ

n
k � fGn

kv̂n
k ¼ 0;

� An
kv̂n�1

k þ Bn
kv̂n

k � En
kv̂n

k þ fGn
kûn

k ¼ 0;

ð51Þ
where the 3 · 3 matrices are defined as follows:
An
k;ij :¼

Z
Sb

wþj w�i dS; Bn
k;ij :¼

Z
St

w�j w�i dS; Cn;1
k;ij :¼

Z
Sl

wþj w�i dS;

Cn;2
k;ij :¼

Z
Sl

w�j w�i dS; Dn;1
k;ij :¼

Z
Sr

w�j w�i dS; Dn;2
k;ij :¼

Z
Sr

wþj w�i dS;

En
k;ij :¼

Z
Kn

k

wjðotwiÞdK; F n
k;ij :¼

Z
Kn

k

wjðoxwiÞdK and Gn
k;ij :¼

Z
Kn

k

wjwi dK:

ð52Þ
To investigate the stability, dispersion and dissipation error of the numerical scheme, we use a discrete Fourier
ansatz for the coefficients of the wave field as
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ðĝn
k; û

n
k; v̂

n
kÞ :¼ kn expðıkkDxÞðĝF; ûF; v̂FÞ; ð53Þ
where ðĝF; ûF; v̂FÞ are the Fourier coefficients.
Substituting (53) into the discretized equations (51), we obtain
Mn
kĝF þ kHð� expð�ıkDxÞCn;1

k þ Dn;1
k � F n

kÞûF ¼ 0;

Mn
kûF þ kgð�Cn;2

k þ expðıkDxÞDn;2
k � F n

kÞĝF � kfGn
kv̂F ¼ 0;

Mn
kv̂F þ kfGn

kûF ¼ 0

ð54Þ
with Mn
k ¼ �An

k þ kBn
k � kEn

k. Combining Eqs. (54), we get the following eigenvalue problem:
Mn
k þ f2Gn

kðMn
kÞ
�1Gn

k � ðkaÞ2Hn;1
k ðMn

kÞ
�1H n;2

k

h i
ûF ¼ 0 ð55Þ
with H n;1
k ¼ � expð�ıkDxÞCn;1

k þ Dn;1
k �F n

k and H n;2
k ¼ �Cn;2

k þ expðıkDxÞDn;2
k �F n

k. If we take uniform elements
of size Dx and Dt then we find using XMAPLE that ðMn

kÞ
�1 is of the form M1=ðk� 1Þ þM2=ðkÞ. After some alge-

braic manipulations, a simplified quadratic eigenvalue problem can be obtained of the following form:
k2P þ kQþ R ¼ 0: ð56Þ

Using MATLAB, we solve for the eigenvalues k with kDx ¼ ½0; 2p�, the CFL number CFLDt ¼ aDt=Dx and Cori-
olis parameter f. For a wide range of CFL numbers and Coriolis parameters, we always obtained max jkj < 1,
which shows that the scheme is unconditionally stable.

The eigenvalue k is analogous to the frequency of the harmonic wave as
k ¼ expðı~xDtÞ ð57Þ

with ~x ¼ ~x1 þ ı~x2 in which ~x1 is the numerical frequency and ~x2 is the dissipation of the numerical scheme.
The dispersion error j~x1 � xj and dissipation error ~x2 of the numerical scheme can now be given as
j~x1 � xj ¼ j argðkÞ � xj and ~x2 ¼ �
lnðjkjÞ

Dt
; ð58Þ
respectively. Some of the eigenvalues of (56) will be close to the actual frequencies of the harmonic wave,
which we use to compute the dispersion error and dissipation of the numerical scheme. In Figs. 5–7, we have
plotted the contours of dispersion and dissipation errors for mesh resolution kDx ¼ ½0; 0:25�, wave frequency
resolution XDt ¼ ½0; 0:25�, Coriolis parameter f ¼ 0; 2; 3 and wave number k ¼ 1. We can observe from the
plots that the dispersion error and dissipation error decrease with the increase of the mesh resolution and
the wave frequency resolution. The exact and numerical dispersion relations in Fig. 8 reveal the dispersion
error in another way.
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5. Verification

The space–time discontinuous Galerkin scheme is verified by comparing the numerical results against some
exact solutions. Also, the dispersion and dissipation error of the scheme are qualitatively verified for a number
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of harmonic waves in rectangular and circular domains. In all the numerical experiments, we work with non-
dimensionalized shallow water equations as stated in Section 2. Errors of the numerical results include the
L2ðXhÞ and L1ðXhÞ norms
kErrorkL2ðXhÞ :¼
X

K

Z
Kn

k

ðUexact �UhÞ2 dK

 !1=2

; ð59Þ

kErrorkL1ðXhÞ :¼ max
K

max
x2Kn

k

kUexact �Uhk
� �

; ð60Þ
where the maximum max k � k is based on local Gauss integration points within the element Kn
k, and Uexact and

Uh are exact and numerical solutions, respectively. The order of accuracy ‘‘order’’ of the method is obtained as
order ¼ ðlnðkErrorkð1ÞÞ � lnðkErrorkð2ÞÞÞ=ðlnðhð1ÞK Þ � lnðhð2ÞK ÞÞ; ð61Þ

where kErrorkð1Þ and kErrorkð2Þ are the errors computed on the meshes with cell measures h

ð1Þ
K and h

ð2Þ
K , respec-

tively. We have refined the space–time mesh uniformly in both space and time.
For many numerical examples considered here, the implementation of the boundary condition was very

crucial in the numerical scheme. To explain the implementation, let Ul ¼ ðhl; hlul; hlvlÞT be the trace taken from
inside the element Kl connected to the boundary face Sm 2 Cbou; Ub ¼ ðhb; hbub; hbvbÞT the boundary data
applied at the boundary face Sm and nl

K ¼ ðnt; ~nKÞT the outward unit normal vector of the face Sm w.r.t.
element Kl. We have implemented the different boundary conditions given Ul as follows:

Open flow boundary: At an open flow boundary, we simply take Ub ¼ Ul.
Solid wall: Consider the momentum equations in primitive variables u as
otuþ ðu � rÞu ¼ �fu? � grðhþ hbÞ ð62Þ

with u? ¼ ð�v; uÞT. Taking the dot product of (62) with the normal vector �n ¼ ðnx; nyÞT and using the zero nor-
mal velocity u � �n ¼ 0 at the wall, we find the following geostrophic balance condition on the resultant tangen-
tial velocity component on a linear piece of the boundary:
fu ��t ¼ g�n � rðhþ hbÞ: ð63Þ

When f ¼ 0 we find �n � rðhþ hbÞ ¼ 0. The velocity is decomposed as follows:
u ¼ ðu � �nÞ�nþ ðu ��tÞ�t ð64Þ

with �t ¼ ð�ny ; nxÞ the tangential vector. For the numerical implementation, we use the ghost value Ub. Rather
than using u � �n ¼ 0 and �n � rðhþ hbÞ ¼ 0 when f ¼ 0, we enforce ub � �n ¼ �ul � �n and ub ��t ¼ ul ��t to obtain
hb ¼ hl; ub ¼ ðn2
y � n2

xÞul � 2nxnyvl and vb ¼ ðn2
x � n2

yÞvl � 2nxnyul: ð65Þ
For f 6¼ 0, the situation appears ambiguous. We took
hb ¼ hl; ðub; vbÞ ¼ �ðul; vlÞ þ ð�ny ; nxÞð2g=fÞð�n � rðhþ hbÞÞ; ð66Þ

such that ub � �n ¼ �ul � �n and ub ��t ¼ �ul ��tþ 2ðg=fÞ�n � rðhþ hbÞ.

Moving wall: At a moving wall boundary we impose in space–time
Ub � n ¼ �Ul � n; Ub � t1 ¼ Ul � t1 and Ub � t2 ¼ Ul � t2; ð67Þ

where t1 and t2 are unit tangential vectors orthogonal to each other and to the normal vector n such that
t1 � t2 ¼ n. Solving (67) simultaneously and substituting the relation t1 � t2 ¼ n, we obtain
hb ¼ ð�n2
t þ n2

x þ n2
yÞhl � ð2ntnxÞhlul � ð2ntnyÞhlvl;

hbub ¼ ð�n2
x þ n2

t þ n2
yÞh

lul � ð2ntnxÞhl � ð2nxnyÞhlvl;

hbvb ¼ ð�n2
y þ n2

t þ n2
xÞhlvl � ð2ntnyÞhl � ð2nxnyÞhlul:

ð68Þ
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5.1. Burgers’ solution

The one-dimensional shallow water equations with hb ¼ 0 take the form of Burgers’ equation otqþ
qoxq ¼ 0, when one of its Riemann invariants is taken constant as uþ 2

ffiffiffiffiffi
gh
p

¼ c with qðt; xÞ ¼ c� 3
ffiffiffiffiffi
gh
p

.
A solution can be constructed as hðt; xÞ ¼ ðqðt; xÞ � cÞ2=ð9gÞ and uðt; xÞ ¼ ðcþ 2qðt; xÞÞ=3 from the implicit
solution qðt; xÞ ¼ q0ðx0Þ; x ¼ x0 þ q0ðx0Þt, where qð0; xÞ ¼ q0ðxÞ is the initial condition. For an initial condition
q0ðxÞ with dq0=dx < 0 somewhere, wave breaking occurs at time tb ¼ �1=minðdq0=dxÞ.

We chose c ¼ 3; q0ðxÞ ¼ sinðpxÞ with x 2 ½0; 2� and used periodic boundary conditions in x. The space–time
profile of water depth for the exact and numerical solutions are shown in Fig. 9(a). The smooth initial con-
dition develops into a discontinuity in a finite time t < tb ¼ 1=p at x ¼ 1. We can thus test Krivodonova’s dis-
continuity detector, which shows no sign of discontinuity in the beginning and gradually detects the regions
with sharp gradients to finally detect discontinuities as shown in Fig. 9(b). Before breaking, we compute sev-
eral errors for mass, h and momentum, hu, on various meshes and plot them on a log–log scale in Fig. 10(a)
and (b). They indicate that the method is second-order accurate in space and time.

5.2. Dispersion and dissipation error

To quantitatively verify the Fourier analysis, we consider the following harmonic wave type solution based
on (47) in a domain ½0; Lx� with hðt; xÞ ¼ H þ A sinðkxþ xtÞ and velocity corresponding to the real part of (48).
In Section 4.2, we have presented the discrete Fourier analysis of equations (47) to determine the numerical
frequency x1 and the numerical dissipation x2 of a given harmonic wave from (57). Here, we initialize with
the harmonic wave solution based on (47) in the non-linear numerical code, for small amplitude, and compare
our numerical simulations both with the exact solutions and discrete Fourier solutions. The discrete Fourier
Fig. 9. (a) Comparison of exact and numerical solutions of water depth hðt; xÞ. (b) Plot of the discontinuity detector. Computations are
performed on an irregular grid of 160 · 160 elements from t ¼ 0 to the time of breaking tb � 0:3 and tb < t < 1. Irregular grids are made by
a slight, random perturbation of the interior grid points of a rectangular mesh.

Fig. 10. (a) Log–log plot of the kErrorkL2ðXhÞ versus grid size h at t ¼ 0:2. The average slope of the curves is 1:955; 1:7875; 1:83 and 1.795
for h and hu on regular and irregular grids, respectively. (b) Log–log plot of the kErrorkL1ðXhÞ versus grid size h at t ¼ 0:2. The average slope
of the curves is 1:32; 1:39; 1:16 and 1.39 for h and hu on regular and irregular grids, respectively. Regular grids are tessellated with 10, 20,
40, 80 and 160 elements and irregular grids with 10 · 10,20 · 20, 40� 40; 80� 80 and 160 · 160 elements. Computations are performed
with time steps Dt ¼ 0:05; 0:025; 0:0125; 0:0625 and 0.003125 from coarse to fine grids.
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solutions can be simply given by replacing frequency x by x1 and amplitude A by A expð�x2tÞ. Fig. 11(a) and
(b) shows the exact and numerical solution at t ¼ 3:0 for f ¼ 2p, respectively. Observe the phase decay of
amplitude of the waves in Fig. 11. We conclude that our numerical scheme confirms the Fourier analysis.

5.3. Poincaré and Kelvin waves

Poincaré and Kelvin wave solutions arise when we solve the linearized rotating shallow water equations in
rectangular channel and circular basins. We simulate the non-linear counterparts of these harmonic waves at
low amplitude for a number of time periods to show the dispersion and dissipation error.

5.3.1. Rectangular channel

Both Poincaré and Kelvin waves [15] are simulated for ten time periods in a rectangular channel periodic in
x. Dispersion errors and dissipation errors are observed in the numerical solutions displayed in Figs. 12 and 13.
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Fig. 11. Free surface plots showing (a) the dissipation in a comparison of the exact versus exact discrete and numerical solution and (b) the
dispersion of the exact discrete and numerical solution for f ¼ 2p; k ¼ 2p; g ¼ 1 and H ¼ 1 with x1 ¼ 8:3535 and x2 ¼ 0:73235 for
Dx ¼ 0:025 and Dt ¼ 0:25. We purposely chose a case with strong dissipation for illustrative purposes.

Fig. 12. Contour plots of the free surface for Poincaré waves (a) at t ¼ 0:0 and (b) at t ¼ 10T . The linear wave amplitude is

Aðxl cosðlyÞ þ fk sinðlyÞÞ sinðkxþ xtÞ with wave numbers k; l, and frequency x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ a2ðk2 þ l2Þ

q
. The wave amplitude is 10�5, zonal

and meridional wave numbers are m ¼ n ¼ 1; g ¼ H ¼ 1, and f ¼ 3:193379349. Simulated on a mesh of size 80 · 40 elements with
CFLDt ¼ 1:0. (a) Initial profile and (b) final profile.
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5.3.2. Circular basin

We numerically simulate Poincaré and Kelvin waves [11], the former from t ¼ 0; . . . ; 10T with
T ¼ 2p=x ¼ 0:7217287851 in a circular basin. Fig. 14 shows contour plots of the free surface for Poincaré
waves and the difference between the exact linear and numerical non-linear solutions. The Kelvin wave mode
has a time period T ¼ 2p=x ¼ 7:356451577 and we numerically simulate these waves from t ¼ 0; . . . ; 5T (see
Fig. 15). In both cases the differences are small as expected for small-amplitude waves.
Fig. 13. Contour plots of the free surface for Kelvin waves (a) at t ¼ 0:0 and (b) at t ¼ 10T . Linear wave amplitude is
AðcoshðlyÞ þ sinhðlyÞÞ sinðkxþ xtÞ with wave amplitude A ¼ 0:001; l ¼ f=a; x ¼ ak, zonal wave number m ¼ 2, g ¼ H ¼ 1 and
f ¼ 3:193379349. Simulated on a mesh of size 80 · 40 elements with CFLDt ¼ 1:0. (a) Initial profile and (b) final profile.

Fig. 14. Contour plots of (a) free surface of the Poincaré waves, and (b) the difference between linear exact and non-linear numerical
solutions after ten time periods. Linear wave amplitude is AJ mðkrÞ sinðmhþ xtÞ with Bessel function J mðkrÞ, radius r, azimuth h, domain
radius R ¼ 1, azimuthal wave number m ¼ 1; f ¼ 1:596689674; A ¼ 0:01; H ¼ 1; R ¼ 1, g ¼ 1, radial wave number k ¼ 8:558068886
obtained from the boundary condition, and x ¼ 8:705742988. (a) Final profile and (b) difference.



Fig. 15. Contour plots of (a) free surface of the Kelvin waves, and (b) difference between linear exact and non-linear numerical solutions at
t ¼ 5T . Linear wave amplitude is AImðkrÞ sinðmhþ xtÞ with modified Bessel function ImðkrÞ; m ¼ 4, f ¼ 1:596689674;
A ¼ 10�5; R ¼ 5; g ¼ H ¼ 1, k ¼ 1:349044778 and x ¼ �0:8541054396. (a) Final profile and (b) difference.
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5.4. Moving grid simulations

5.4.1. Harmonic wave maker

Consider the linearized shallow water equations otgþ Hr � u ¼ 0 and otuþ grg ¼ 0 in a rectangular basin
of size ½ð0; LxÞ � ð0; LyÞ� with a solid wave maker at the boundary xEðt; yÞ ¼ Lx þ xmðt; yÞ, fixed solid walls on
the remaining boundaries, free surface perturbation gðxÞ around a mean surface H, and velocity field
ðuðxÞ; vðxÞÞ. After applying the kinematic boundary condition at the wave maker and linearizing the resulting
expression, we obtain otxm ¼ uðt; x ¼ Lx; yÞ. A linear gravity-wave type solution follows as
Fig. 16
that x
ðgðxÞ; xmðt; yÞÞ ¼ g0 cosðkxÞ;�gk sinðkLxÞ=x2
� 	

cosðlyÞ sinðxtÞ;
ðuðxÞ; vðxÞÞ ¼ �gkg0ðk; lÞ sinðkxÞ cosðlyÞ cosðxtÞ=x;

ð69Þ
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¼ 2p. At t ¼ T=2 and T, the free surface is nearly flat. (a) At t = T/4 and (b) at t = 3T/4.
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Fig. 17. Contour plots of water depth h for a time period T ¼ 2p=x ¼ 1:0. Parameters g ¼ 1; H ¼ 1; g0 ¼ 0:5; n ¼ 1 and m ¼
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such
that x ¼ 2p. (a) At t = T/4, (b) at t = T/2, (c) at t = 3T/4 and (d) at t = T.
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where g0 is the amplitude of the harmonic free surface waves, x the frequency determined from the dispersion
relation x2 ¼ gHðk2 þ l2Þ once l ¼ np=Ly the wave numbers along y and k ¼ mp=Lx along x are known, with n

an integer and m a real number.
We initialize the non-linear equations using the gravity wave solution (69) at t ¼ 0, and prescribe the move-

ment of the wave maker at x ¼ Lx to simulate the waves induced. To maintain elements of regular size, we
move the nodes of the grid by linearly interpolating between the wave maker and the solid wall at x ¼ 0. Thus,
given the coordinates of a node at time tn�1, it is straightforward to determine these at time tn. We simulate the
non-linear waves generated by the harmonic wave maker for low and high amplitudes. At low amplitude, we
see that harmonic waves in the wave maker agrees qualitatively with the solution (69), see Fig. 16 and at high
amplitudes, these harmonic waves start to break due to non-linearity and moving bores are formed, see
Fig. 17. For low amplitude the energy stays essentially constant, while for high amplitude the energy fluctuates
but initially decreases on average due to wave breaking, see Fig. 18.

6. Validation

In this section, we validate numerical simulations of bore–vortex or bore–shear interactions against the
qualitative analytical predictions of PV anomaly from the expression (10). In each of the three cases presented,
there is initially no PV, but PV is generated through the passage of a non-uniform bore. We verified the sim-
ulations against Tassi et al.’s [21] who used a space DG method.
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Fig. 18. Plots of the energy as a function of time in the wave maker test. (a) Low amplitude and (b) high amplitude.
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6.1. Non-linear breaking shallow water waves

We consider the linear gravity wave solution
gðxÞ ¼ A sinðlyÞ sinðkxþ xtÞ;
ðuðxÞ; vðxÞÞT ¼ Ag �k sinðlyÞ sinðkxþ xtÞ; l cosðlyÞ cosðkxþ xtÞð ÞT=x

ð70Þ
in a rectangular domain of size ½Lx; Ly � periodic in x with solid walls along y, k ¼ 2pm=Lx; l ¼ ð2nþ 1Þp=Ly ,
and x2 ¼ gHðk2 þ l2Þ. The non-linear numerical discretization is initialized with this linear solution (70) at
t ¼ 0:0 with A ¼ 0:01; g ¼ H ¼ 1, m ¼ 2 and n ¼ 0.

Due to non-linearity, these higher amplitude gravity waves start to break around t � 0:5, which can be con-
firmed from the energy–time graph shown in Fig. 20(a). The breaking of the waves is first seen at the peak of
crests and troughs of the free surface near to the walls, see Fig. 19(a) and (b). As seen in Fig. 21(a), the break-
ing extends to the interior and moving bores are formed which are aligned in the y-direction with some cur-
vature. Since the non-uniform depth profile of the bore appears to be preserved in time, we estimate its
upstream and downstream depths from (70) as
h1ðŷÞ ¼ H � gDðŷÞ and h2ðŷÞ ¼ H þ gDðŷÞ; ð71Þ
Fig. 19. Free surface height of the water at (a) t = 0.0 and (b) t = 0.5.
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respectively, with gDðŷÞ ¼ jÂj sinðpŷÞ, Â the amplitude and ŷ the axis aligned along the bore neglecting the cur-
vature of the bore. These bores are traveling in the negative x-direction with their axis ŷ roughly parallel to the
direction of y-axis. Substituting the depths (71) in (10), we get the PV generation behind the bore as
Fig. 20
functio
DP ¼ P1 �P2 ¼
2gg2

Dð3H 2 � g2
DÞ

ðH 2 � g2
DÞ

2

�1

Q
dgD

dŷ

� �
: ð72Þ
For �0:5 < y < 0, we have dgD=dŷ > 0; h1 > h2; Q < 0 and DP > 0; and for 0 > y > 0:5, we have
dgD=dŷ > 0; h1 < h2; Q > 0 and DP < 0. Hence, the PV generated in Fig. 21(b) has a positive sign on the
positive y axis and vice versa. Also see the zonal average of PV along the grid lines parallel to x-axis in
Fig. 20(b). This qualitatively validates the bore–vortex anomaly discussed in Section 2.

The bores formed are simulated till t ¼ 25 when they have dissipated their energy as seen in Fig. 20(a). As a
result, we see a PV jet formation near to the walls, shown in Fig. 21(d)–(f). Due to energy dissipation, the
strength of the bores gradually decreases as in Figs. 21 and 22(a), and finally the bores disappear in
Fig. 22(c)–(e). Although the bores disappear, the jet remains since PV is materially conserved (see
Fig. 22(d)–(f)).
t

E

0 5 10 15 20 25

1.126

1.127

1.128

1.129

1.13

Y

av
er

ag
e

P
V

-0.4 -0.2 0 0.2 0.4

-0.1

-0.05

0

0.05

0.1

t = 0

t = 25

Y

av
er

ag
e 

u

-0.4 -0.2 0 0.2 0.4

-0.008

-0.006

-0.004

-0.002

0 t = 0

t = 1

t = 25

. Shown are (a) the energy E ¼ EðtÞ ¼
R

X
~Eðx; tÞdxdy (cf. 4) as function of time, (b) profiles of PV averaged along the channel as a

n of y, (c) profiles of u averaged as a function of y at various times.



Fig. 21. (a) Free surface height of the water and (b) shadow graph of the PV generated at t = 1.0. Observe the PV generation has opposite
signs. (c) and (d) Same at t ¼ 2:5. (e) and (f) Same at t ¼ 5:0.
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Fig. 22. (a) Free surface height of the water and (b) shadow graph of the PV generated at t = 10. (c) and (d) Same at t ¼ 20. (e) and (f)
Same at t ¼ 25.
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6.2. Bore propagation over a mound

6.2.1. Conical shaped mound

Matsutomi and Mochizula [13] conducted experiments to study the behavior of a bore propagating over a
conical shoal and Hu [7] conducted numerical simulations of these experiments.

We show similarly that the correct PV anomaly is generated in our numerical simulation due to non-uni-
form energy dissipation along the bore.

Consider the dam-break initial condition hð0; �xÞ þ hbð�xÞ ¼ hL for x < xc; hð0; �xÞ þ hbð�xÞ ¼ hR for x > xc and
water at rest uð0; �xÞ ¼ 0, where x ¼ xc is the discontinuity in a rectangular channel of size ½0; Lx� � ½0; Ly �. Let
an isolated conical shaped mound be situated with its center at �xm ¼ ðxm; Ly=2Þ, radius Rm, height Hm. The
bottom topography in the channel is
Fig. 23
of 0.5.
hbðxÞ ¼
Hm � Hm

Rm
j�x� �xmj; if j�x� �xmj 6 Rm;

0:0; if j�x� �xmj > Rm:

�
ð73Þ
The boundaries of the domain consist of solid walls except for an open boundary at x ¼ Lx.
When the dam collapses, a bore with uniform jump is generated which propagates towards and over the

conical hump, see Fig. 23, and dissipates energy uniformly along its length. When the bore reaches the conical
hump energy dissipation becomes non-uniform and the approximate PV generation (10) across the bore is
P1 �P2 �
ED

Q
1

h1

þ 1

h2

� �
ð�oyhbÞ; ð74Þ
with h1 � hL � hb and h2 � hR � hb, since we always observe a nearly uniform jump in the free surface along
the bore in our numerical simulations and ŷ is aligned with y. For y > Ly=2, we have �oyhb > 0 and vice versa
for y < Ly=2. Hence, a positive PV anomaly arises for y > Ly=2 and a negative one for y < Ly=2 after the bore
has passed. This is confirmed in the contour plots of PV shown in Fig. 24: a positive vortex and PV are found
for y > L=2 and vice versa for y < L=2 after the bore’s passage. Thereafter, these PV anomalies are advected
along, cf. (5).

6.2.2. Gaussian shaped mound

In this test case, we also consider an initial dam break as hð0; �xÞ þ hbð�xÞ ¼ hL for x < xc,
hð0; �xÞ þ hbð�xÞ ¼ hR for x > xc and water at rest uð0; �xÞ ¼ 0. The discontinuity in the free surface lies thus
at x ¼ xc in a rectangular channel of size ½0; Lx� � ½0; Ly �. It has solid wall boundaries except for an open flow
boundary at x ¼ Lx. The bottom topography consists of an isolated Gaussian shaped mound with a peak at
�xm ¼ ðLx=2; Ly=2Þ
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Fig. 24. Conical mound case. (a)–(f) Shows the contour plots of the PV at times t ¼ 0; 2; 4; 6; 8 and 10. Note that PV is zero at t ¼ 0.
Computations are performed on a grid of size 200 · 130. Parameters are Lx ¼ 4:0; Ly ¼ 2:6; xm ¼ 2:5; Rm ¼ 1:2 and H m ¼ 0:012.
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hbðxÞ ¼ Hm expð�cmj�x� �xmj2Þ; ð75Þ

where Hm is the height of the Gaussian mound and cm a constant.

When the initial dam collapses, a bore with a uniform jump is generated which propagates towards the
Gaussian mound, see Fig. 25. As the bore reaches the Gaussian mound, we deduce from (74) that the potential
vorticity generated behind the bore must have positive sign for y > Ly=2 as oyhb < 0 and negative sign for
y < Ly=2 as oyhb > 0. Hence, the PV generated and seen in Fig. 25(b) and (c) agrees with the observed one.
Once the bore crosses the peak of the hump, a hydraulic jump facing backwards is formed which can be seen
as a depression in Fig. 25. Thus, it can likewise be deduced that PV anomalies are generated at the hydraulic
jump with opposite signs to the initial PV generated at the bore, which is confirmed in Fig. 26(d).



Fig. 26. Gaussian mound case. Displayed are contour plots of PV at various times. Note that initially PV is zero. Computations are
performed on a grid of size 175 · 175. We chose Lx ¼ Ly ¼ 3:5; xc ¼ 0:5; hL ¼ 0:11; hR ¼ 0:02; Hm ¼ 0:01 and cm ¼ 12:5. (a) t = 4,
(b) t = 6, (c) t = 8 and (d) t = 10.
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7. Conclusions

A space–time discontinuous Galerkin method for the (rotating) shallow water equations has been presented
for shallow flows over varying topography and in time dependent domains. This application of the space–time
discontinuous Galerkin method is new. It is especially interesting as a mile stone towards accurate numerical
modeling of the time evolution of the water line in flooding and drying events. These events are important in
the prediction of river floods and near-shore hydrodynamics.

Due to the presence of bores in the shallow water equations spurious oscillations will arise in higher order
shock-capturing numerical schemes such as our space–time method. We have limited these spurious oscilla-
tions around discontinuities and sharp gradients by applying dissipation but only near discontinuities once
these are detected by Krivodonova’s discontinuity detector [9]. Furthermore, we showed that our numerical
discretization preserves the state of rest for non-uniform topography, by use of a smooth approximation
for the topography. A discrete Fourier analysis of the numerical discretization for one-dimensional linearized
rotating shallow water equations showed that the scheme was unconditionally stable with small dispersion and
dissipation error.

We have thoroughly verified the present method by testing the order of accuracy and the application of the
discontinuity detector in combination with the dissipation operator. The method was second-order accurate in
space and time in the L2 norm for a linear polynomial approximation of flow fields. We simulated small-ampli-
tude gravity, Kelvin and Poincaré wave solutions for a number of time periods to observe the dispersion and
dissipation errors. Of special importance was the validation of the numerical discretization by simulating
bore–vortex interactions, which could be compared with analytical results on the generation of PV anomaly
by non-uniform bores. The relevance of these bore–vortex interactions in testing numerical schemes has been
promoted in work by Hu [7] and Peregrine [16]. Several demanding cases were considered in Section 6: PV and
shear formation by breaking waves in a periodic channel, and the generation of PV and vortices by an initially
uniform bore over non-uniform topography. Finally, the versatility of the present method in dynamic domains
has been demonstrated numerically in Section 5.4.1. We considered the generation of nearly linear and highly
non-linear waves by prescribing the motion of a flexible domain wall as a wave maker. It showed that the
space–time DG method seems well suited for improved simulation of run-up and backwash on beaches [5]
and in flood prediction.
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